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The problem of stabilizing programed motions of mechanical systems 
with holonomic and nonholonomic relationships is considered for various 

degrees of information about parameters of the equation of motion. First, 
the laws of control that stabilize programed motions in the nonadaptive 
case when parameters of the equation of motion are known and the initial 
per~rbatio~ are arbitrary, are synthesized. The adaptive control is con- 

structed on that basis; such control ensures after the transitional process of 
adaption the closeness of the actual and programed motions. Solution of the 
adaption problem is based on the method of finite-convergent algorithms 
for solving systems of inequalities proposed in [l]. Estimates of the time 
taken by the transitional process are presented for the adaptive and non- 

adaptive cases. Application of proposed algorithms for adaptive stabilization 
of programed motions of a transport robot on a caterpillar undercarriage 

and of a robot manipulator is discussed [2-5],, 

I. Statement of the problem, Let us consider a mechanical system defined by an 
equation of the form 

n (Q, cl’, E> 4” -t b (4, 4.3 E> = u (1.1) 

where q is the n vector of the system generalized coordinates, and q’ and q” are 
its first and second derivatives with respect to time; u is the n-vector of generalized 
forces which play the part of control; E is the r- vector of the system parameters; A (q, 

q’, E) is an n X n nonsingular matrix-function, and b (4, q‘, E) is an n-vector 
function. The conditions of existence and uniqueness of solution of Eqs. (1.1) are satis- 

fied, since system (1.1) consists of Lagrange equations of the second kind for which these 
conditions are always satisfied. Let Qs, Qne, and QE be bounded sets of admissible val- 

ues of phase variables q, and q’ , and of para’meters g, 
We shall consider two kinds of relatio~hi~ z between the m-vector z of the con- 

sidered variables related to the functioning of system (1.1). and 4 

2 = f (4) 
2’ = f (z, 4, q’) 

(1. ‘a 
(1.3) 

The relationships (I, 2) and ( 1.3) are usually referred to as holonomic and nonholonomic, 
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respectively. 

Strictly speaking, the correct form of equations of motion of systems with nonholo- 

nomic relationship (1.3) require the introduction of variables z and z’ to the argu- 

ments of the matrix function A (-) and vector function b (.) . However for the sake 
of shortness of formulas this is omitted, since all subsequent reasoning is essentially in- 
dependent of that requirement. 

An example of a mechanical system with a holonomic relation is the multilink ma- 

nipulator [2,3]. In it vector 9 defines the manipulator configuration (components of 
are angles between links, etc.), and z defines the position of its gripping mechanism 
(component of z are the coordinates and, possibly, directional cosines of the gripper). 
A trolley on wheels or on a tracked undercarriage provides an example of a mechanical 
system with nonholonomic relationship. In that case the components of p are the angles 
of turn of the wheels or of the sprockets driving the tracks, and the components of z are 
Cartesian coordinates of the trolley and its heading angle. 

The programed motion will be defined by the vector function zju z zI, (t), t > t,, 
such that function qp (t), which is the solution of Eqs. (1.2) or (1.3), after the substi- 
tution s = sp (t) and z’ = z,’ (t) satisfies conditions 

I) q&t)~Q$, qp‘(t)E Q: Vt>t,; 
2) qp” (t) is piecewise continuous and \\ qp” (t) I/ < ccl-- Ft > to, where Qi’ C 

Qw Q: c 0s s and the distance between the boundaries of sets QT atid Q$ and 

the boundaries of sets QP and QP- is, respectively equal 6, and 6, , The positive pa- 
rameters 6, and 6, are later selected on grounds of the necessity to ensure phase con- 

straints on the real motion for all t > to_ 
Note. 1”. Usually n> 1~ I i. e. Eqs. (I. 2) or (1,3) are nonuniquely solvable 

for 4 . This ambiguity (the system kinematic redundancy) can be used for satisfying 

certain supplementary conditions (bypassing obstacles, selection of optimal qp (t) for spe- 
cified zp (t) , etc.). When TV < m, a part of components of vector z is a function of the 

remaining ones and can be discarded. 

2”. Phase constraints can be reformulated in terms of z (by using the equations 
of relation (1.2) or (1.3)). Namely, z E Q, and 2’ E Q,.. The programed motion 
zp (t) must satisfy conditions zlt (1) E QZsS, zp’ (t) E. Q~.~‘, zp” (t) must be piecewise 
continuous, and ii zp” (tf II < cze.for all t >, to . 

3”. The definition of programed motion must include the stipulation that the phase 

constraints on programed motions must be satisfied with some n margins” 15~ and S,. 
Below we adduce formulas for calculating S, and 6, using a priori known parame- 
ters and the discrepancy between real and programed motions at the initial instant of 
time. In practice the selection of programed motion may be, for instance, as follows: 
select a function to define the programed motion, measure the initial discrepancy (the 
actual initial state of the system is always assumed known ), calculate margins 6x and 

6, with which phase constraints must be satisfied, and check that this is so in the case 
of the selected function for all t > to. If the constraints are satisfied that function is 
taken as the programed motion. Otherwise, another function with smaller initial dis- 

crepancy is selected, and the described procedure repeated. 
In the scheme considered here the programed motion is assumed to be specified 

and to satisfy all necessary conditions. 
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The aim of the control is to realize the programed motion of the system with the 

best possible exactness. If zp (to) = z (to), zP’ (to) = z’ (t,) and qp (to) = q (t,} , 

and the initial parameters of the equation of motion are known, the programed control 

law UP (i$ = A (qp, qp’, 5) qP” + b (qp, qp’, E) ensure the required motion, i. e. 
the actual motion z (t) conforms to the programed one zp (t) for all t > t,. How- 

ever under real conditions parameters E of the equation of motion can only be known 
with an accuracy to within their belonging to the specified set Qs. Furthermore initial 
perturbations are present, i.e. z (to) # zp (t,) and z* (to) # zp’ (t,). Hence it is not 
possible to use the programed control U, (t) . 

The problem of adaptive stabilization of programed motion consists of synthesizing 

the control law u = U (q, q’, z, z’, t) in the class of piecewise continuous bounded 
functions which for any parameters E E Q: and any initial perturbations ensure the 
transition of the system to the programed motion within specified accuracy beginning at 

a certain instant of time t, > t,’ 

II 2 (t> - ZP (0 II < El9 II 2’ (t> - zp’ tt> II Q 82, Vt > t, 
V’E E Qz, ~1, -52 > 0 

(1.4) 

The time t, - t,, t, = t, (.Q,-Q, E) ,is called the time of the adaptation trans- 
ition process in the sense of the specific condition (1.4). 

The formulated problem is solved in two stages. First, on the assumption that para- 
meters E are known, the stabilizing laws of control, different from those proposed ear- 
lier [6-81, are derived. Then, on the basis of such nonadaptive control scheme, the adap- 
tive problem is solved by reducing it to the solution of a system of inequalities for the 

parameters of the sought control by the method of finite-convergent algorithms proposed 

in Cl]. 
2. StabUzotion of programed motion8 in the nonodoptivc CO)& Let us assume that 

parameters E of the equation of motion (1.1) are known. We shall, first, consider me- 

chanical systems with holonomic relationship defined by (1.1) and (1.2). and devise the 
stabilizing control on the basis of the stipulation that the difference between real and 

programed motions e, (t) = z (t) - zp (t) or e4 (t) = q (t) - qp (t) must satisfy 

the differential equation of discrepancies 

. . 
e = l?,e’ + l?,e (2.1) 

where r1 and rs are constant matrices such that the zero solution of this equation is 
asymptotically stable. 

The discrepancy equation can generally be selected from the class of second order 
nonlinear differential equations which have a trivial solution and ensure the specified 
quality of the transition process. In the described variant the selection of matrices Ii 
and IZ (and later of B, and B, ) depends on the specification of the transition process, 
and is carried out by methods of the theory of linear differential equations, in particular 
these matrices may be selected on optimization considerations. 

The normal form of Eq. (2.1) is 
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where 0 is a zero matrix and i is a unit matrix af corresponding dimensicn. We assume 
that the eigenvalnes Yi of matrix I? , which is stable, have a unit multiplicity. Then 
the estimate 

II E (t> II d C II E (t,) II =P I-- Y (t - 4Jl, Y = 
- maxi (Re yi> 

(2.2) 

where c is a positive constant dependent on the selection of matrices I’1 and I’a , is 
valid. 

In the considered holonomic case we stipulate that the quantity e,, (t) must satisfy 

the discrepancy equation (2.1). We select the margins 

6, = 6% = C II E, NJ /I, E, (t> = (eci (& 6,’ (QT 

Theorem 1. If function f (9) in (1.2) and its first derivative with respect to time 

fr (cry 4’) = (df/Q) CJ’ belongs to Lipschitz’s classes with respect to its arguments with 

constants L, L,, and L,. , respectively, then the control law 

ensures the fulfilment of condition (1.4), and for the transition process time the estimate 

is valid. 
Pro of. The control (2.3) is obviously piecewise continuous and bounded. Let us 

close by this control the system (1.1). Owing to the reversibility of matrix A (.) we 
have 

e;, “ = l?,e,,’ -j- l?ae, 

Since jj e, jj < /I Eg jl and 11 ew4 jl -< 11 E, jjl f rence taking into account (2.2) we ob- 
tain 

II 4 (4 - q?, (tf II 
II g’ CL) - c7p’ (4 II I 

G c II -% Vo) /I QXP I- Y 6 - GJfl 

The actual motion 4 (t) does not fall outside the admissible sets Q4 and Q4-, since it 
does not diverge from the programed motion by more than C I] E, (to) II. 

The estimates 

II 28 (t) - zp ft) II < LC II J% (to) ii exp I- y (t - to>1 

II 2’ (a - 2, tt) II d C G -I- Lv) II J% @J II exp f- y (t - t,)l 

are evidently valid. 
Solution of the system of inequalities 
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LC )I E, (to) 11 exp b-j tt - to)] < El 

c (L, + L4.) 11 E, (to) 1) exp l--y tt - to>] -C ‘3, El3 ‘,>” 
yields 

t - to > + max In 
CL II E, (to) II , ln C Wq + -$) II Ep (to) II 

El E.2 

from which directly follows the required estimate (2.4). 
Let us consider the nonholonomic system whose generalized coordinates z and q 

are related by Eqs. (1.1) and (1.3). In this case the closeness of z (t) and 2, (t) to 

z’ (t) and z,’ (t) in the sense of (1.4) does not generally follow from the closeness of 
Q (t) and qp (t) to q’ (t) and qp’ (t) . Hence the control law (2.3) determined by 

Theorem 1 does not ensure the attainment of the specified conditions (1.4) for systems 
with the nonholonomic relationship (1.3). 

Unlike in the holonomic case in constructing the control , we aim here at subjec- 
ting the quantity e, (t) to the discrepancy equation (2.1). We introduce the notation 

(2.5) 
zz (t, rr, I?,) = zp” + I’1 (z’ - zp’) + rz (z - zp), E, = 

II I 
:‘. 
2 

and select the margins 6, = 6, = c 1 E, (to) (1. 
Lemma 1 

condition 
The vector function qy (t) selected for t > t,, on the basis of 

s ( H t, h, r,) dt + 2’ (to) = f (2, qvl 6) 
to 
qy (to) = 4 (to)? 9v’ PO) = 4’ (to) 

(2.6) 

satisfies phase constraints and ensures the fulfilment of conditions 

lim (1 z (t) - z. (t) )I = 0, lim 11 2’ (t) - %’ (t) )( = 0, t - 00 (2.7) 

and consequently, also, of conditions (1.4). 
Note 4”. For actual mechanical systems Eqs. (1.3) or (2.6) have unique solu- 

tions for variables 4 ( or part of these when n > m ). If these equations are algebraical- 
ly solvable for Q’ (which is not always so), a numerical solution can be obtained by one 
of the conventional methods. However even in the case of unsolvability (as in the exam- 

ple considered below) it is usually possible, with allowance for the particular properties 
of Eqs. (1.3) or (2.6), to obtain a solution; function qy” (t) is assumed to be piecewise 
continuous, which usually happens when zp” (r) is piecewise continuous. 

Proof. From (1.3) and (2.6) we have 

f = s H (t, rl, r,) dt + 2’ (to) t. 
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and after differentiation with respect to time 

2 “ = H (t, I?,, r,) 2= 2,” + I?, (2’ - zp’) + rs (2 - z&J 

or e,” I r,e,’ + I?,. By virtue of (2.2) and (2.6) we obtain 

from which follow conditions (2.7) and consequently, also, (1.4). Actual phase variables 
z and z’ do not deviate from the programed by more than C 11 E, (to) 11, hence 

the phase constraints are not violated. In terms of q the motion qT (Q7 which in con- 
formity with the previous statement does not fall outside the admissible sets, corresponds 
to that motion. 

Theorem 2. The control law 

U = R (q, 4’* EJP,” + b (Q, Q’, E) (2.9) 

where qu (t) is selected in accordance with Lemma 1, ensures that all conditions 
q (t) =5 qy (8) are satisfied for all t > t,, , and consequently guarantees the fulfil- 
ment of conditions (1.4). 

Proof. We substitute control (2.9) for system (1. I). Owing to the reversibility of 
matrix A (. ) for all t > t, we obtain qY*’ (t) = q” (t) , Integrating twice and ta- 
king into account the coincidence of initial condition we satisfy the requirement. Piece- 
wise continuity and boundedness of control (2.9) is checked by obvious means. 

Let us estimate the time of the transition process, By solving the equality 

C 11 E, (to) 11 exp l--y (t - &)I < E, e>Q 

we obtain 

Taking into account (2.8) we find that conditions (1.4) are satisfied at least from 
the instant of time t, when Ed = &a = E I 

3. Adaptive rtabflfiation of programed motion8 of mechanical q&em& Let us con- 
sider the case of practical importance in which parameters 8 in the equation of motion 
(1.1) are unknown. In that case it is not possible to use control laws (2.3) and (2.91, and 
it is necessary to construct an adaptive control. 

We assume that the following conditions are satisfied: 
1) the equation of motion is of the form 

where G (.) is an n X N matrix function and ‘G (6) is an N-vector, and 
2) the set QT G z (Qc) is convex in RN. 
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Let us consider the nonholonomic system (1. l), (1.3) (the holonomic system (1. l), 
(1.2) is analyzed in the same way). 

We define the control law by the formula 

u = G [q, $7 qY*’ + B, (q’ - qy’) + B, (q - qy)lrk, 
t E (Gc, t.k+J 

(3.2) 

where B, and B, are certain n X n matrices, Tk is an N- vector to be taken as 
the estimate of the unknown vector ‘t (E) in the time interval (tk, tk+llt k = 0, 
1 ’ and . . ., tk are the instants of vector z corrections, defined below. The control 

(3.2) is obviously piecewise continuous and bounded. 

Let us consider the subsidiary inequalities 

cD lz, 7k, t) = &, - 11 u - G (qt 6, q.77 II > 0, E,‘> 0 (3.3) 

which are obviously solvable with margin eU for z = Z (E) . Hence the finite-con- 
vergent algorithms of the form 

(3.4) 

where tk ’ is the first instant of time in the interval (try t&+11 such that @ (ak7 ‘Gk, 
tk’) < 0 and 7,, is an arbitrary N- vector Q7 of the initial approximation, can be 
used for solving the above inequalities (for further details see [l-4]). These algorithms, 

called adaption algorithms, guarantee that (3.3) is satisfied for all t > t,. and a = 

T6, = const ) after the finite number r of violation of inequalities (3.3) and, con- 
sequently also after r corrections of T in accordance with (3.4). In other words, the 
estimate tk of vector 7 (g) becomes “frozen” from a certain finite instant of time, 
and inequalities (3.3) are thereon satisfied. 

We denote by 0 the time required for calculating z~+~ on the basis of Tk by 

(3.4). Then obviously tls+l = tk’ + 8 , and inequality (3.3) is valid for t ir 

Uk (tk, tk+l - 81 and violated for t E u, (tki, - 0, tk, 1 . 
An example of the recurrent EniteconSerging algorithm is (3.4) with 

T [7h., Cp (Q, ‘Ck, th_‘)l = P Q? [$ + G,?‘ (G,G,‘)-’ (U (tk’) - GkTk)] (3. 5) 

To E Q5, Gk = G [q (tk’), (Ik’ (tk’), q” (&‘)I 

where PO_ is the operator of orthogonal projection onto set QT. It can be shown that 
for r corrections of algorithm (4.3), (3.5) the estimate 

r ( ii T (5) - To 112 c;; 
\ EU‘Z -3 cc = SUPIIG(.)ll 

(3.6) 

is valid. 
All quantities in the left-hand side of inequalities are bounded, hence there exists a 

positive number A such that 
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II u - G (9, q’, q-b II < A, t > to 
Below we shall need the following lemma. 
Lemma 2. Let matrix 

‘0 I ’ 
I‘= 

II II l-1 I’, 

be stable and its eigenvalues yi have a unitary multiplicity. We assume that the vec- 
tor function 7 (t) is piecewise continuous in Ita, m) and satisfies the condition 

(3.7) 

and that the Lebesgue measure p (I;) < y, where 6, A, v are some positive num- 
bers. Then for the solution of equation 

e -- = r,e’ + r,e + r (t) 

with initial data e (t,) and e’ (to) the following estimate is valid: 

II e (t) II 
II e’ Cl) II 

+ C exp [- 1’ (t -- to)] II so /I + + 6 + CA\ 

so = (e (to), e’ (to))‘_, y = --maxi {Re yi} 

where (= is some positive constant. 
The proof of Lemma 2 is trivial (see, e. g., [7]). 
Condition 1) and formulas (3.2) imply that 

n = A (q, 4.1 Elc) [clu” t- B, k’ - qy’) + B, (q - q-,)1 t 
b (rl, c/‘> hc) 

where vector Ek E Qt is such that r (&) = TV E Q . 
We have 

E - u = /i (‘I, Q’, Ek) [q” - qy” - 13, (q’ - qy’) - B, (q - pi)1 
2) G (q, q’, q”)~/; = A (q, q’, Ed q” t b (q, q’, E,;) 

If e,, (f) z-m= (/ (t) - (I-< (f) , then 

“11 ‘* = H,e,,’ + B,e,, -t A-’ (q, q’, &) (v - zc), cq (to) = e,’ (to) = 0 (3.8) 

and by virtue of (3.2)-(3.5) the estimate 
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is valid. 
It is obvious that the Lebesgue measure p (F) < re. 
We assume that matrix 

is stable and its eigenvalues have unitary multiplicity, then, applying Lemma 2 to Eq. 
(3.8) and taking into account estimate (3.8), we obtain 

II e, (t) II 
II 4 (t) II 

< + CAE,, -+ C~C,ArB 
q 

(3.10) 

From (3.8) we have 

. . 
II eq (4 II < &CA (II B1 II -t II & II) + II r (t) II 

r (t) = A-’ (4, Q’, ZA (u - u) 

(3.11) 

Differentiating conditions (2.6) and (1.3) with respect to time we obtain 

H (t, I’l, I?,) = -& f (z, qy, q,,‘) = $ z’ + $ +,,’ L + Q,,“s 

fl (2, z*, qy, Qv’, qy”) 

Let us assume that function fr (e) belongs to Lipschitz’s class with respect to q, q’ , 
and q” with constants L,, L,., and L,.. , respectively. Then, taking into account (2.5), 

(3. lo), and (3. ll), we obtain 

II 2” - zp” - l?l(Z’ - zp’) - r‘2 (2 - zp) II = II fl (z, z’, q. 4’7 4”) ~- 

fl (2, 2.3 qv, qy’, qy”) II < L, II 4 @) - (Ir (4 II + -h II (1’ (4 - 
q,’ (t) I] 4 L,** Il 4” (4 - 4v” (t) II < (L, + Li + /J’I.* x 

(II BI II + II Bz II)) A% 4 C,CziArO 4 L,+- II ‘1 (4 II 

We introduce the notation 

(L, 4 L,, + L,- (II B1 II + II & II)) + CAE, + (:,CtiArB)= K (E,,,I.,~) 
I 

and obtain 
e, *’ = Ge,’ + r2ez + 5 (t) 

K (e,, r-7 0) + .&CAau, t E [to, =-) \ IT’ 

II c(t) II < K( 
E,, r, 0) + Ll..C~4A, t E F = hGl(tk -3, tk] 
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Applying once again Lemma 2 we obtain the estimate 

II z (4 - ZP G) II 

II z’ CL) - ZP’ (4 II i 

(3.12) 

< CT II E, PO) II exp I- yz (t - Ml -t y h7 I^, 0) 

This shows that the considered adaptive control can ensure the fulfilment of (1.4) 

when “i = c2 = E > y. If the actual motion z (t) is to satisfy phase constraints, it 
is necessary to stipulate that these constraints must be satisfied by the programed motion 

z,, (t) with margins 6, -= 6% = C, I( E, (to) II -I- Y- 
Let us estimate the time t, - ta of the adaptation transition process. Solving the 

inequality 

C, II E, (to) 11 esp I-yz (t - to)1 + Y c E, E >- YJ 

with allowance for (3.12), we obtain 

c, II fl, kJ II 

E - q’ 
(3.13) 

In this way the following theorem has been proved. 
Theorem 3. Assume that conditions 1) and 2) are satisfied and that matrix B 

with simple eigenvalues is stable, and that function fi (s) belongs to Lipschitz’s class 
with respect to q, q’ and y” with constants L,l, L,. and L,,.. , respectively. Let 

also the phase constrictions on z, (t) be satisfied with margins 6s = 6, = 
C, II h’, (to) II + Y. Then the control (3.2)-(3.5) ensures the fulfilment of conditions 
(1.4) with Ed = t’* = E > Y, and the estimate (3.15) of the adaption transition pro- 
cess is valid. 

In practice the time of the adaption transition process must be as short as possible. 

This can be achieved by the optimal selection of parameters E, and 8 (which defines 
the time-optimal action of algorithm (3.4), (3.5)) with the aim of minimizing the right- 
hand side of inequality (3.12). We substitute estimate (3.6) for the number r of cor- 
rections. Then, taking into account that dY i 88 > 0, we take the shortest possible 
time 0 = 0, (limited by technical characteristics of the adaption algorithm). After 
this we select F,, * > 0 on the basis of minimization of function Y (E,~, 0,). Such 
E II * exists and is unique, since Y (E,,, 0,) as a function of & is of the form 

Thus the optimal estimate of the time of the adaptation transition process for E \ 

‘Jr (%*, 0,) is of the form 
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In the particular case when I( E, (to) 11 = 0 and E > Y (eu*, 0,) the time of adap- 

tation transition process is zero, i. e. conditions (1.4) are satisfied from the initial in- 
stant of time t = t, = to due to the adaptive tuning of parameters zk of the con- 
trol law (3.2) in conformity with (3.4) and (3.5). 

4. EXampla. Let us consider a transportation robot in the shape of a self-propelled 

trolley on tracks, for which the equations of nonholonomic relationships (1.3) are (with 
some degree of idealization) of the form 

(4.1) 

where x9 v are Cartesian coordinates of the middle of the axis with the driving sprockets 
of tracks, 11) is the angle of the trolley course, (Pi, ~2 are the angles of rotation of dri- 
ving sprockets of radius r , and I is the trolley half-base. Integrating the third of 
Eqs. (4.1) and substituting the result into the first and second of these, we obtain 

Hence z = (x, Y)~ and rl = (cpi, cp2)T. Equations (4.2) cannot be solved algebraically for 
91’ and ‘pZ’ it is, however, possible to express these quantities in terms of variables 

z (see Note 4”). namely 

. 
_ -!- 

%,2 - r 

Hence formulas (4.2) satisfy the conditions of Lemma 1. The form of these shows 
that they belong to nonholonomic Chaplygin systems. The equations of motion are of the 

form (1. l), where A (0) = A (E) is constant nonsingular 2 x 2 matrix whose elements 
depend on the mass, moments of inertia, and linear dimensions of various parts of the 

trolley, b (.) = b (Q’, e) is a 2-vector function which depends on g” and parameters E 
which in addition to the previously indicated contain coefficients of (internal and ex- 
ternal) friction, and u = (pi, up) T is the 2-vector of control moments. The equations 
of motion and relationship satisfy stipulations of Theorem 3, consequently, the derived 
above algorithms may be used for calculating the adaptive stabilization of programed 
motions a transport trolley. 

Similar algorithms may, also, be used for the adaptive stabilization of programed 
motions of a robot manipulator which is a system with holonomic relationships. A de- 
tailed exposition of solution of that problem are given in [2-41 together with experimen- 
tal results of its simulation on a computer. 
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